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Summary An additive risk model is a useful alternative to the Cox model (Cox, 1972) and

may be adopted when the absolute effects, instead of the relative effects, of multiple predictors

on the hazard function are of interest. In this article, we propose using the threshold gradient

descent regularization (TGDR) method for covariate selection, estimation and prediction in

the additive risk model for right censored survival data when the dimension of the covariate

vector can be greater than the sample size. Such “small n, large p” problems may arise

in the investigation of association between survival times and gene expression profiles. We

propose using the V -fold cross validation and a modified Akaike’s Information Criterion (AIC)

for tuning parameter selections. The proposed method is demonstrated with two real data

examples. The results show that the TGDR is effective in model reduction and can identify

more relevant covariates than the least absolute shrinkage and selection operator approach.

Key words: Censored survival data; Cross validation; Gene expression; High-dimensional

covariates; Regularization; Semiparametric model.
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1. Introduction

The need for analyzing right censored survival data when the number of covariates is greater

than the sample size arises in investigating association between microarray gene expression

profiles and a censored survival outcome. For example, in the diffuse large B-cell lymphoma

(DLBCL) study reported in Rosenwald et al. (2002), the goal is to identify genes from a total

of 13413 genes printed on cDNA microarrays that are associated with time to relapse based

on a data set of sample size 40. For such “small n, large p” problems, standard methods for

censored survival data developed for the case where n >> p are no longer directly applicable,

since the parameters in the model are not estimable without any constraints or regularization.

When the dimension of the covariate vector is smaller than, but comparable to the sample

size, standard approaches usually yield unstable estimates, since in such cases, the observed

information matrix tends to be ill-conditioned.

A fruitful approach for coping with “small n, large p” problems is via regularization. Com-

monly used regularization methods can be divided into two types based on the characteristics

of the parameter estimates. The first type includes the ridge regression (RR) and the partial

least squares (PLS) which discourage dispersion among the absolute estimated parameter val-

ues; the second type includes the least absolute shrinkage and selection operator (LASSO) and

the least angle regression (LARS) that encourage dispersion among the absolute estimated

parameter values and sparsity in the estimated model. Both types of regularization methods

have been applied to censored survival data with high dimensional covariates. Recent studies

include the application of the standard PLS method for the Cox model by Nguyen and Rocke

(2002), the LARS-LASSO procedure for the Cox model by Gui and Li (2004), and the LASSO

method for the additive model by Ma and Huang (2005). Although the LASSO based methods

can produce sparse solutions, they may miss important covariate factors by shrinking their

coefficients to zero. This is particularly problematic for genomic data, where there may exist
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many covariates effects with small to moderate coefficients. In addition, if there is a group

of variables among which the pair-wise correlations are high, the LASSO approaches tend

to select only one variable from that group. Extensive discussions on various regularization

methods and their characteristics can be found in Friedman and Popescu (2004).

In a linear regression model with high-dimensional covariates, Friedman and Popescu

(2004) proposed a threshold gradient descent regularization (TGDR) method for model reduc-

tion, parameter estimation and prediction. The basic idea of this method is to first define a

set of candidate models as a path in the space of joint parameter values. Then a point on this

path is chosen as the final model by minimizing an appropriate objective function. The high

dimensional parameter path can be traversed by varying tuning parameters. The TGDR can

provide a path connecting the solutions roughly corresponding to PLS/RR and the solutions

roughly corresponding to LASSO/LARS by varying the threshold values. Moderate to large

threshold values create paths that involve more diverse absolute coefficient values than the

PLS/RR solutions but less than the LASSO/LARS solutions. Empirical studies show that for

models whose true parameters are between dense and sparse, the TGDR tends to yield more

accurate predictive models.

In this article, we apply the TGDR to right censored survival data with high dimensional

covariates, under the semiparametric additive risk model assumption. The additive risk model

(Aalen, 1980) is a useful alternative to the Cox model (Cox, 1972) and may be adopted when

the absolute effects, instead of the relative effects, of multiple predictors on the hazard function

are of interest. This model has been studied extensively by many authors. In particular, Lin

and Ying (1994) proposed an elegant and simple estimating equation approach for parameter

estimation in the additive risk model. This estimating equation can be cast in the framework

of a least squares problem. The availability of such a least squares structure makes the

adaptation of the TGDR method for censored survival data computationally convenient. We
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note that in the Cox model, no simple least squares structure is available, and minimization

of the negative partial likelihood involves iterative reweighted least squares problems.

This article is organized as follows. In section 2, we first give a brief description of the

Lin and Ying estimator for the additive risk model. We then describe the TGDR method by

reformulating the Lin and Ying estimator as a solution to a least squares problem. Tuning

parameter selections, which involve selecting the number of iterations needed in the gradient

descent search and the value of the threshold parameter for the gradients, are based on the

V -fold cross validation and a modified Akaika’s Information Criterion (AIC), respectively. In

section 3, we illustrate the proposed method using two data sets, one is the primary biliary

cirrhosis (PBC) data set (Fleming and Harrington, 1991) and the other is the DLBCL data

set (Rosenwald et al., 2002). Concluding remarks are given in section 4.

2. TGDR estimate in additive risk model

2.1 Additive risk model

Consider the additive risk model as described in Lin and Ying (1994), where the conditional

hazard at time t is

λ(t|Z(·)) = λ0(t) + β′Z(t),(1)

given a p-dimensional vector of possibly time-varying covariates Z(·). Here β and λ0(·) denote

the unknown regression parameter and the unknown baseline hazard function, respectively.

The components in β denote the absolute change in λ per unit increase in the corresponding

covariates.

Consider a random sample of size n. For the ith data unit, denote {Ni(t) = I(Xi ≤ t, δi =

1); t ≥ 0} and {Yi(t) = I(Xi ≥ t); t ≥ 0} as the observed event process and the at-risk process,

respectively. In the additive risk model (1), the parameter β can be estimated by solving the
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following estimating equation

U(β) =
n∑

i=1

∫ ∞

0

Zi(t){dNi(t)− Yi(t)dΛ̂0(β, t)− Yi(t)β
′Zi(t)dt} = 0,(2)

where Λ̂0(β, t), the estimate of Λ0(t) =
∫ t

0
λ0(u)du, satisfies

Λ̂0(β̂, t) =
∑

i

∫ t

0

{dNi(u)− Yi(u)β̂′Zi(u)du}∑n
i=1 Yi(u)

.(3)

The resulting estimator of β is obtained by solving the equation

[
n∑

i=1

∫ ∞

0

Yi(t){Zi(t)− Z̄(t)}⊗2dt

]
β̂ =

[
n∑

i=1

∫ ∞

0

{Zi(t)− Z̄(t)}dNi(t)

]
,(4)

where Z̄(t) =
∑n

i=1 Yi(t)Zi(t)/
∑n

i=1 Yi(t). Denote Li =
∫∞
0

Yi(t){Zi − Z̄(t)}⊗2dt and Ri =

∫∞
0
{Zi − Z̄(t)}dNi(t).

Denote the (s, l) element of Li as Li
s,l and the sth components of Ri and β as Ri

s and βs,

respectively. We can see that equation (4) is equivalent to the following p equations:

(
n∑

i=1

Li
s,1

)
β1 + ... +

(
n∑

i=1

Li
s,p

)
βp =

n∑
i=1

Ri
s, s = 1, . . . , p.(5)

It is obvious the estimate defined by (5) is the same as

β̂ = argminβ



M(β) =

p∑
s=1

{(
n∑

i=1

Li
s,1

)
β1 + ... +

(
n∑

i=1

Li
s,p

)
βp −

n∑
i=1

Ri
s

}2


 .(6)

When p is comparable to n, serious collinearity in Z may exist, and thus the estimate

obtained by solving (4) may be numerically unstable. When p is larger than n, unique solution

to equation (4) does not exist.

2.2 The TGDR estimate

The TGDR parameter path finding algorithm proposed by Friedman and Popescu (2004) for

a linear regression model can be adapted to the additive risk model (1) as follows. Denote ∆ν

as the fixed positive infinitesimal increment, and νk = k×∆ν as the index for the point along

6



the parameter path after k steps. Let β(νk) denote the parameter estimate corresponding to

the index νk. For any fixed threshold value 0 ≤ τ ≤ 1, the TGDR path finding algorithm

consists of the following iterative steps:

1. Initialize β(0) = 0 and ν0 = 0.

2. For the current estimate β, compute the negative gradient g(ν) = −∂M(β)/∂β. Denote

the jth component of g(ν) as gj(ν). If maxj(abs(gj(ν))) = 0, stop the iterations.

3. Compute the vector f(ν) of length p, where the jth component of f(ν): fj(ν) =

I{|gj(ν)| ≥ τ ·maxj |gj(ν)|}.

4. Update β(ν + ∆ν) = β(ν) + ∆ν × g(ν)× f(ν) and ν = ν + ∆ν .

5. Steps 2–4 are repeated S times. S is taken to be a large number to guarantee a full

parameter path.

The product of f and g in step 4 is component-wise. A possible variation of the above

algorithm is to use the standardized negative gradient g(ν) = g(ν)/maxj|gj(ν)| in step 4,

so that each increment cannot be overly greedy and subtle structures are not missed. The

threshold τ determines the relative degree of regularization: large τ yields estimates close

to the LASSO/LARS, whereas estimates with small τ are close to those from the RR/PLS.

Since each increment is made in a direction in an acute angle with the negative gradient, each

successive point on the parameter path has nonincreasing M(β).

Consider an extreme case where there exist two nearly identical covariates (with the same

norm and correlation coefficient → 1). An ideal estimating approach should yield nearly equal

coefficients for those two covariates. With the LASSO approach, it is easy to construct an

example where the difference between the two estimated coefficients is bounded away from

7



0. With the TGDR, since nearly identical covariates have nearly equal gradients, the TGDR

estimates, which are determined by the gradients, have similar values.

2.3 Tuning parameter selection

We select the tuning parameters k and τ using the following two-step approach. First we

choose the tuning parameter k for any fixed τ using the V -fold cross validation (Smyth, 2001)

for a pre-defined integer V . Partition the data randomly into V non-overlapping subsets of

equal sizes. Choose k to minimize the cross-validated objective function

CV score(k) =
V∑

v=1

[
M(β(−v))−M (−v)(β(−v))

]
,(7)

where β(−v) is the TGDR estimate of β based on the data without the vth subset for a fixed

k and M (−v) is the function M defined in (6) evaluated without the vth subset.

A byproduct of the above V -fold cross validation is the minimal CV scores (minimized

over k) as a function of τ . To emphasize this relationship, we denote the minimums as

min CV score(τ). Careful inspection of (7) reveals that the CV score defined here is sim-

ilar to the sum of squared errors in linear regression. Considering the fact that τ directly

determines the number of covariates in the model, we propose choosing τ as the solution to

argminτ [n×log{min CV score(τ)/n}+2K(τ)], where K(τ) is the number of covariates in the

model for each τ . The proposed objective function mimics the AIC defined for simple linear

regression. By minimizing the above objective function, the selected threshold τ provides a

balance between goodness-of-fit and parsimony of model.

2.4 Model evaluation

Let β̂ be the TGDR estimate with k and τ selected with the approach proposed in section

2.3. After β is estimated, the baseline cumulative hazard Λ0 can be estimated by replacing β

with β̂ in (3).
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For 0 ≤ τ ≤ 1 and finite k, the regularized estimates are usually not the exact least squares

solutions, and the martingale structure in the residuals of the least squares estimate of Lin

and Ying (1994) no longer holds. We propose using the sum of pseudo martingale residuals

defined by

(8)
n∑

i=1

(δi − exp(−Λ̂0(Ti)− β̂′ZiTi))
2,

which roughly corresponds to the sum of squared errors in linear regression, for model eval-

uation. Loosely speaking, a better model should have smaller sum of pseudo martingale

residuals.

An alternative model evaluation approach is based on the linear risk scores β′Zi. Assume

the censoring time C has density function φ(c) and is independent of Z. Then Pr(δ = 1|Z) =

∫
(1− exp(−Λ0(c)− β′Zc))φ(c)dc. So Pr(δ = 1|Z) is a monotone function of β′Z under mild

regularity conditions. A better model should provide more accurate classification based on

the estimated linear risk scores β̂′Zi. Relevant discussions can be found in Pepe, Cai and

Zhang (2004). The accuracy of classification can be measured by the standard ROC (receiver

operating characteristic) curves, in which case the AUC (area under curve) can be used as a

single comparison criteria.

2.5 Variance approximation

The TGDR algorithm of Friedman and Popescu (2004) itself does not directly lead to variance

estimation of the estimated parameters. We rewrite this algorithm in a more explicit form

and propose a sandwich variance estimator. The same notations as in section 2.2 are used

here.

Denote the component-wise product of f(νk) and g(νk) as h(νk). To simplify the notations,

denote gk = g(νk), fk = f(νk), hk = h(νk), for k ≥ 0. Let the initial values β0 = 0 and
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g0 = L′R = LR. In the threshold gradient descent search,

(9) βk = βk−1 + ∆νhk−1, k = 1, 2, . . . .

Denote G = L′L, then the gradient update is

gk = gk−1 −∆νGhk−1, k = 1, 2, . . .

Let Tk be a diagonal matrix whose diagonal elements are those of the vector fk. All the

nonzero elements in the diagonal of Tk are 1. Since hk = fk · gk (component-wise product),

we have hk = Tkgk. Therefore,

gk = gk−1 −∆νGTk−1gk−1 = (Ip −∆νGTk−1)gk−1, k = 1, 2, . . . ,

where Ip is the p× p identity matrix.

Let A0 = Ip, Uj = Ip −∆νGTj and Ak =
∏k−1

j=0 Uj, k = 1, 2, . . .. We have

(10) gk = Uk−1gk−1 = Akg0, k = 0, 1, . . . ,

It follows that

βk = βk−1 + ∆νTk−1gk−1(11)

= βk−1 + ∆νTk−1Ak−1g0

= β0 + ∆ν(T0A0 + T1A1 + · · ·+ Tk−1Ak−1)g0.

Let Φk = T0A0 + T1A1 + · · ·+ Tk−1Ak−1. A more compact expression of βk is βk = ∆νΦkL
′R.

With the expression (11), we propose the following variance estimator of βk. We first

estimate V ar(R) by C =
∑n

i=1

∫ n

0
{Zi(t) − Z̄(t)}⊗2dNi(t). Similar to the sandwich variance

estimator given in Lin and Ying (1994) and noting that L is symmetric, we propose to estimate

the variance of βk by

Σk =
1

n
∆2

νΦkLCLΦ′
k.
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Computationally, we can use the following updating equations. For Φk, we use Φ0 = T0,

Φk = Φk−1 + Tk−1Ak−1, k = 1, 2, . . .. For Ak, we use A0 = Ip, Ak = Ak−1Uk−1, k = 1, 2, . . ..

For computing TkAk, we note that Tk is a diagonal matrix whose non-zero elements are 1. So

when it left-operates on Ak, it simply sets the all the rows of Ak corresponding to the zero

rows of Tk to zero while keeping all the remaining rows intact. Similarly, for Uk = Ip−∆νGTk,

Tk replaces all the columns of G corresponding to the zero columns of Tk by zeros.

In the special case of τ = 0 (no truncation) and full rank L, Tk = Ip, and Ak = (Ip−∆νG)k,

βk = ∆ν [Ip + (Ip −∆νG) + · · ·+ (Ip −∆νΣ)k−1]L′R

→ ν[Ip − (Ip −∆νG)]−1L′R

= ∆ν∆
−1
ν (L′L)−1L′R

= (L′L)−1L′R as k →∞.

Therefore, when τ = 0, the gradient search in the additive risk model is an iterative algorithm

that computes the Lin and Ying estimator if k is allowed to converge to infinity. However,

the speed of convergence can be quite slow if ∆ν is very small. Furthermore, we note that for

a finite k selected by cross validation, which may not be big enough to reach convergence, the

resulting estimates can be different from the Lin and Ying estimator. At the other extreme

when τ = 1, the TGDR yields the most sparse solution. In addition, when τ = 0 and L is of

full rank, Σk converges as k →∞ to the sandwich variance estimator of Lin and Ying (1994).

3. Examples

3.1 PBC data

Between 1974 and 1984, the Mayo Clinic conducted a clinical trial of cirrhosis of the liver

(PBC). We focus on the 276 patients with complete records. Descriptions of the covariates

and a Cox model analysis can be found in Fleming and Harrington (1991). We employ the
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additive risk model (1). Following the analysis of Fleming and Harrington (1991), we first

make log transformations of the covariates alkphos, bili, chol, copper, platelet, protime, sgot

and trig, so that the marginal distributions of the covariates are closer to normal. Another

purpose of transformation is to make the covariates more comparable, so that the gradient

descent procedure will not be dominated by a small number of covariates. Because of the

relatively large sample size and moderate dimension of the covariate, this data set can be

analyzed using standard methods. So it provides a test example for the proposed TGDR

method as well as an opportunity to compare the TGDR method and the standard approach.

In applying the TGDR method, we select the number of iterations k in the gradient

search using a 10-fold cross validation. For the threshold value τ , we only consider τ =

0, 0.1, . . . , 0.9, 1.0. With the modified AIC, the model with τ = 0.9 is identified to be the best

model (Table 1). Corresponding estimates are shown in Table 2. For comparison purposes,

we also reproduce relevant results for the full additive model using the Lin and Ying estimator

and the results of the LASSO approach from Ma and Huang (2005).

Table 1 provides the summary of the proposed cross-validation calculations with the

TGDR, including the values of the threshold parameter τ used in the calculation; the re-

sults of the cross validated steps k in the gradient descent search; the pseudo martingale

residual values defined in (8); the values of the AUC; the number of covariates selected; the

CV scores; and the AIC scores. We see that it takes more steps in the TGDR to find the

minimum of the CV scores as the threshold value τ increases. The greater the threshold value

τ is, the fewer the non-zero coefficients result in the final model. Interestingly, for the PBC

data, the same model is selected for τ = 0.5, ..., 1.0, and this model is identical to the model

selected by LASSO (Ma and Huang 2005).

Table 2 presents the estimated regression coefficients, the estimated standard errors, and

the corresponding z-scores based on the Lin and Ying method, the LASSO, and the TGDR.
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Of the four covariates selected by the TGDR and the LASSO, two (age and log(bili)) have the

biggest z-scores in the the full model. However, the other two covariates (stage and log(copper)

selected by the TGDR and the LASSO only have modest z-scores. The LASSO and the TGDR

give very similar estimated coefficients, but the LASSO gives bigger standard error estimates

than the TGDR. As for the classification accuracy, the TGDR is similar to the LASSO in

terms of the AUC values, and both approaches perform satisfactorily as can be seen from the

large AUC values. Furthermore, the model selected by the TGDR has slightly higher AUCs.

The estimates from the TGDR differ significantly from their counterparts from the full

model. The Lin and Ying estimates have zero bias under the additive risk model, but have a

larger sum of pseudo-martingale residual squares. On the other hand, the TGDR estimates

obtained based on the cross-validation selected model selected have smaller sum of pseudo-

martingale residual squares. We also calculated the 10-fold CV score for the Lin and Ying

estimate following a procedure similar to that in section 2.3. The Lin and Ying CV score is

61.23, which is considerably larger than the TGDR CV scores of about 45.

The characteristics of the estimates can be more easily seen in Figure 1. In the top panel,

we show the plot of the estimated coefficients as a function of the threshold values of τ for

cross validated k. It is clear that when τ = 0 or near zero, the estimated coefficients are

shrunk towards zero, exhibiting behavior similar to the ridge estimates. When τ increases

to one, many coefficients become zero, exhibiting behaviors similar to the LASSO estimates.

The bottom panel shows the estimated coefficients as a function of k for the final model with

τ = 0.9. All the coefficients start from zero, but as the gradient search progresses, the non-zero

estimates selected by the TGDR become distinguished from the zero ones.

3.2 DLBCL data

Rosenwald et al. (2002) reported a gene expression profiling analysis for diffuse large B-

13



cell lymphoma (DLBCL), in which a total of 96 normal and malignant lymphocyte samples

were profiled over 17856 cDNA clones. None of the patients included in this study had been

treated before obtaining the biopsy samples. Among the 42 patients, 40 had follow-up survival

information, including 22 deaths with survival times from 1.3 to 71.3 months and 18 censored

observations with followup times from 51.2 to 129.9 months. The objective is to identify genes

whose expression levels are associated with survival.

We assume the additive risk model (1) for the conditional hazards given the gene expression

values and apply the proposed TGDR approach. The underlying model assumption is that

multiple genes contribute to the hazard of event independently in an additive manner. We first

apply the two-step approach in Rosenwald et al. (2002). For s = 1 . . . 13413, we fit marginal

additive models with the expression levels for the sth gene as a one-dimensional covariate. All

genes with marginal p-values less than 0.01 are included in the second step additive model

fitting. 122 out of 13413 genes are identified to be marginally significant at the 0.01 level. For

comparison purposes, we also consider the LASSO estimate (reproduced from Ma and Huang,

2005). Because the sample size n = 40, which is much smaller than the number of genes in

the study and is also smaller than the number of genes selected in the first stage, standard

methods do not apply if we want to consider all the 122 genes jointly in the model. We apply

the TGDR method for the additive risk model to this data set consisting of the selected genes

from the first stage.

Table 3 shows the models identified using 10-fold cross validation for different values of τ .

Similar to the results from the PBC data, more iterations are needed in the gradient search

with bigger values of τ , and there are more zero coefficients with bigger values of τ . However,

unlike for the PBC data, the sums of martingale residuals generally show an increasing trend.

Classification based on the model with τ = 1.0 is the most accurate. The model with τ = 1.0

is chosen as the best one using the modified AIC. This model includes 20 genes. The results
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are summarized in Table 4. The results based on the LASSO method are also included in this

table. The LASSO selects 9 genes in the model. Among these 9 genes, eight are also selected

by the TGDR.

For the 8 genes selected by both the TGDR and the LASSO, their estimated coefficients

are different, but the differences are small, and their effects have the same direction in that

the signs of these coefficients are the same. One important difference between the TGDR

and the LASSO is that the former is able to pick up genes with high correlation in their

expression values. For example, for genes with rank 1, 3, and 22 (ID 14837, 4899, and 15171),

the correlation coefficients are: 0.78 between 1 and 3, 0.79 between 1 and 22, and 0.89 between

3 and 22. Detailed correlation structures are available upon request from the authors. All

these 3 genes were selected by the TGDR. However, the LASSO only selected the gene 1.

It is interesting to note that all the z-scores based on the TGDR are not significant from

the conventional point of view. But this does not mean that they are not correlated with

the survival time. One plausible explanation is that the sample size (n = 40) is quite small

compared to the number of covariates in the model (122), and so the standard errors are

relatively large, which reflects the large uncertainty of the estimation results in such a “small

n, large p” situation.

Similar to Figure 1, Figure 2 shows the plot of the estimated coefficients as a function of

the threshold values for cross validated k (top panel) and the plot of the estimated coefficients

as a function of k for the final model with τ = 1.0 (bottom panel). However, for the DLBCL

data, the differences between the estimated coefficients with τ near or at zero and those with

τ near or at one are greater. In particular, the coefficients are shrunk more towards zero for

small τ and are more diverse for τ near 1. The bottom panel shows that the some coefficients

become stable early in the gradient search when they reach certain non-zero values, while the

others emerge later in the search.
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4. Discussion

Analysis of censored survival data with a large number of covariates is an important practical

problem, especially now microarrays that can assay tens of thousands of genes are becoming

a routine tool in the studies of various types of cancers and many other diseases. How to

associate gene expression data with clinical outcomes such as patients’ survival and identify

important genes or clusters of functionally related genes presents a class of interesting and chal-

lenging problems in survival analysis. In this article, we proposed using the TGDR method of

Friedman and Popsecu (2004) for analyzing right censored data with high-dimensional covari-

ates under the additive risk model assumption, based on the estimating equation developed

by Lin and Ying (1994). The two real data examples illustrate that the proposed approach

can effectively reduce the dimension of the covariates, while providing satisfactory classifi-

cation results. TGDR is capable of adapting to the degree of sparsity of the problem via

cross-validation selection of the threshold value τ . As we see from Figures 1 and 2, smaller

values of τ yield dense estimates, while bigger values of τ yield more sparse estimates. This is

difference from the existing regularization methods through penalization such as the RR and

the LASSO which are not as adaptive to the degree of sparseness, since the functional form

of the penalty plays a major role in determining the sparsity of the solution. Another useful

feature of the TGDR is that it is capable of selecting a set of covariates that have similar

values or are highly correlated. This is in contrast to the LASSO method, which may only

pick one from the set of correlated covariates.

Several important issues remain unsolved for the TGDR estimator in the additive risk

model. In particular, the sampling distribution of the estimator is unknown. Because the

TGDR algorithm is highly nonlinear and martingale structure no longer exists in the estima-

tor, the standard methods for deriving asymptotic distributions do not apply to the TGDR

estimator. The distributional property of the TGDR estimator is an interesting problem and
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will be pursued in the future. We have suggested a sandwich variance estimator for the es-

timated regression coefficients for fixed values of threshold τ and the number of iterations k,

further studies are needed to evaluate the impact of cross validation in this variance estima-

tor. Initially, we have also considered using subsampling techniques, such as the bootstrap

or the jackknife, to estimate the sampling distribution of the TGDR estimator. We did not

pursue this strategy since it is not clear to us whether the bootstrap or the jackknife would

be theoretically valid in the present problem. Our limited numerical studies suggest that the

bootstrap/jackknife variance estimates do not seem plausible. Despite the difficulty in eval-

uating the sampling distributional properties of the TGDR method, we have demonstrated

empirically that this method provides an effective and practical way for variable selection,

model estimation, and prediction in “small n, large p” problems with censored data, to which

the existing methods in survival analysis are not directly applicable.
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Table 1. PBC data: model features for different threshold τ . s: cross validated number of steps.

residual: sum of martingale residuals. K(τ): number of variables with non-zero coefficients.

τ k residual AUC K(τ) CV score AIC score
TGDR

0.0 608 75.27 0.840 17 43.96 -473.05
0.1 614 75.45 0.838 14 44.08 -478.29
0.2 645 68.76 0.827 15 44.86 -471.45
0.3 665 73.39 0.837 6 45.10 -487.98
0.4 702 72.44 0.833 5 45.37 -488.33
0.5 829 70.43 0.827 4 45.44 -489.91
0.6 930 70.04 0.828 4 45.44 -489.91
0.7 1022 68.87 0.826 4 45.33 -490.58
0.8 1025 68.15 0.823 4 45.16 -491.61
0.9 1101 68.03 0.821 4 45.14 -491.73
1.0 1148 67.70 0.820 4 45.40 -490.15

LASSO 67.58 0.817 4 – –
Full model 78.36 0.821 17 – –
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Table 2. PBC data: estimated coefficients (×10), standard errors (×10) and z − scores.

Full Model LASSO TGDR
Covariate Estimate SE z-score Estimate SE z-score Estimate SE z-score

age 0.025 0.008 3.109 0.033 0.015 2.200 0.029 0.012 2.432
alb -0.436 0.276 -1.582 0.000 0.000 0.000 0.000 0.000 0.000

log(alkphos) -0.055 0.115 -0.477 0.000 0.183 0.000 0.000 0.000 0.000
ascites 2.736 1.260 2.172 0.000 0.000 0.000 0.000 0.000 0.000
log(bili) 0.597 0.153 3.884 0.769 0.206 3.733 0.788 0.185 4.253
log(chol) -0.222 0.298 -0.744 0.000 0.000 0.000 0.000 0.000 0.000

edtrt 0.165 0.075 2.214 0.000 0.000 0.000 0.000 0.000 0.000
hepmeg -0.047 0.186 -0.253 0.000 0.000 0.000 0.000 0.000 0.000

log(platelet) 0.128 0.233 0.549 0.000 0.106 0.000 0.000 0.000 0.000
log(protime) 1.569 1.039 1.510 0.000 0.000 0.000 0.000 0.000 0.000

sex -0.067 0.309 -0.217 0.000 0.000 0.000 0.000 0.000 0.000
log(sgot) 0.302 0.224 1.347 0.000 0.000 0.000 0.000 0.000 0.000
spiders 0.154 0.258 0.698 0.000 0.000 0.000 0.000 0.000 0.000
stage 0.068 0.089 0.768 0.177 0.114 1.553 0.211 0.063 3.347
trt 0.035 0.150 0.233 0.000 0.000 0.000 0.000 0.000 0.000

log(trig) 0.034 0.200 0.170 0.000 0.000 0.000 0.000 0.000 0.000
log(copper) 0.183 0.107 1.717 0.062 0.148 0.419 0.121 0.040 3.034
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Table 3. DLBCL data: model features for different threshold τ . s: cross validated number

of steps. residual: sum of martingale residuals. K(τ): number of variables with non-zero

coefficients.

τ k residual AUC K(τ) CV score AIC score
TGDR

0.0 1200 10.48 0.869 122 182.1 304.63
0.1 1229 10.50 0.866 119 182.4 298.69
0.2 1338 10.55 0.864 114 182.6 288.74
0.3 1461 10.46 0.851 96 185.4 253.35
0.4 1727 10.45 0.846 74 188.5 210.01
0.5 2398 10.52 0.843 51 191.9 164.72
0.6 4960 11.42 0.841 40 196.1 143.59
0.7 10665 12.54 0.833 32 195.4 127.45
0.8 70450 14.89 0.917 29 189.3 120.18
0.9 141102 15.51 0.929 26 181.9 112.58
1.0 163200 15.22 0.927 20 176.8 99.45

LASSO 5.152 0.861 9 – –
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Table 4. DLBCL data: ID: gene ID. Rank: rank based on marginal p-values. Estimated

coefficients (×10), standard errors (×10) and z − scores.

LASSO TGDR
Rank ID Estimate SE z-score Estimate SE z-score

1 14837 0.058 0.105 0.553 0.022 0.041 0.543
3 4899 – – – -0.022 0.094 -0.243
9 515 – – – 0.012 0.069 0.181
12 17879 0.056 0.086 0.647 0.441 0.776 0.569
16 12822 0.319 0.188 1.698 0.502 1.047 0.479
22 15171 – – – -0.063 0.236 -0.266
29 12600 – – – -0.756 3.046 -0.248
39 1591 – – – 0.081 0.423 0.192
62 4253 – – – 0.063 0.486 0.129
67 2689 – – – 0.478 1.217 0.393
68 2060 – – – -0.079 0.257 -0.307
73 19274 -0.479 0.369 -1.297 -0.487 0.955 -0.510
88 2059 -0.740 0.389 -1.899 -0.842 1.551 -0.543
91 19307 0.417 0.227 1.833 – – –
95 14140 0.271 0.141 1.922 0.360 0.693 0.519
100 21333 – – – 0.208 0.600 0.348
101 10411 – – – 0.003 0.149 0.021
102 19282 -0.332 0.220 -1.510 -0.624 1.411 -0.442
103 14049 0.021 0.087 0.244 0.143 0.276 0.517
106 17499 – – – 0.127 0.343 0.370
110 15583 – – – 0.073 0.206 0.355
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Figure 1: PBC data. Upper panel: estimated coefficients as a function of the threshold value.
Lower panel: estimated coefficients as a function of step for τ = 0.9.
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Figure 2: DLBCL data. Upper panel: estimated coefficients as a function of the threshold
value. Lower panel: estimated coefficients as a function of step for τ = 1.0.
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